SAR image segmentation based on Artificial Bee Colony algorithm
نویسندگان
چکیده
Due to the presence of speckle noise, segmentation of Synthetic Aperture Radar (SAR) images is still a challenging problem. This paper proposes a fast SAR image segmentation method based on Artificial Bee Colony (ABC) algorithm. In this method, threshold estimation is regarded as a search procedure that searches for an appropriate value in a continuous grayscale interval. Hence, ABC algorithm is introduced to search for the optimal threshold. In order to get an efficient fitness function for ABC algorithm, after the definition of grey number in Grey theory, the original image is decomposed by discrete wavelet transform. Then, a filtered image is produced by performing a noise reduction to the approximation image reconstructed with low-frequency coefficients. At the same time, a gradient image is reconstructed with BC algorithm rey entropy some high-frequency coefficients. A co-occurrence matrix based on the filtered image and the gradient image is therefore constructed, and an improved two-dimensional grey entropy is defined to serve as the fitness function of ABC algorithm. Finally, by the swarm intelligence of employed bees, onlookers and scouts in honey bee colony, the optimal threshold is rapidly discovered. Experimental results indicate that the proposed method is superior to Genetic Algorithm (GA) based and Artificial Fish Swarm (AFS) ods based segmentation meth
منابع مشابه
Segmentation of SAR images using improved artificial bee colony algorithm and neutrosophic set
This paper proposes a novel synthetic aperture radar (SAR) image segmentation algorithm based on the neutrosophic set (NS) and improved artificial bee colony (I-ABC) algorithm. In this algorithm, threshold value estimation is considered as a search procedure that searches for a proper value in a grayscale interval. Therefore, I-ABC optimization algorithm is presented to search for the optimal t...
متن کاملMulti-level Threshold Image Segmentation Based on PSNR using Artificial Bee Colony Algorithm
Image segmentation is still a crucial problem in image processing. It hasn yet been solved very well. In this study, we propose a novel multi-level thresholding image segmentation method based on PSNR using artificial bee colony algorithm (ABCA). PSNR is considered as an objective function of ABCA. The multi-level thresholds (t*1, t*2 ,...., t*n-1, t*n) are those maximizing the PSNR. We compare...
متن کاملA Comparative Study on Image Segmentation Based on Artificial Bee Colony Optimization and FCM
The goal of image segmentation is to cluster the pixels of an image into several regions. This article describes the method of image segmentation using Artificial Bee Colony Optimization (ABC). This optimization technique is motivated by intelligent behaviour of honey bees and it provides a population based search procedure. In this article Gaussian Mixture Model (GMM) is used and each pixel cl...
متن کاملMaterial composition detection using an image segment with an improved artificial bee colony algorithm
In the process of material composition detection, image analysis is an inevitable problem. Multilevel thresholding based on the OTSU method is one of the most popular image segmentation techniques. The increase of the number of thresholds increases with the exponential increase in computing time. In order to overcome this problem, this paper proposes an artificial bee colony algorithm with a tw...
متن کاملElite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011